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Abstract 

Background Binge eating (BE) is associated with a range of cognitive control deficits related to impulsivity, 
including lower response inhibition, preference for immediate gratification, and maladaptive decision-making. The 
aim was to investigate whether impulsivity and BE may interact with the decision process and underlying brain 
activity in outpatients with overweight or obesity who are starting a treatment to achieve weight loss.

Methods A sample of 26 treatment-seeking outpatients with overweight or obesity was evaluated for impulsivity, 
BE, and temporal discounting rates. Impulsivity was measured with the Barratt Impulsiveness Scale (BIS-11), according 
to which two groups were composed: high BIS and low BIS; BE was assessed with the eating disorders module 
of the Structured Clinical Interview for DSM5—Research Version, according to which two groups were composed: 
with (BE group) or without BE (NBE group). Changes in subjective value of rewards were measured with the Temporal 
Discounting Task (TDt) where participants had to choice between sooner but smaller vs. later but larger monetary 
rewards. These choices were made in two differently delayed conditions (“Now” and “Not-now”). Brain rhythms were 
recorded through high-density electroencephalogram (hd-EEG) during the TDt.

Results Patients with BE reported more impulsive tendencies and perceived sooner rewards as more gratifying 
when both options were delayed (Not-now condition, p = 0.02). The reward choice in the TDt was accompanied 
by a general EEG alpha band desynchronization in parietal areas observed without differences between experimental 
conditions and patients groups. No effects were observed within the Now condition or in the other EEG bands.

Conclusions The tendency to favor immediate rewards may constitute an obstacle to adhering to treatment plans 
and achieving weight loss goals for outpatients with overweight or obesity. Clinicians are therefore encouraged 
to include psychological factors, such as impulsivity and dysfunctional eating behaviors, when designing weight loss 
programs. By addressing these psychological aspects, clinicians can better support patients in overcoming barriers 
to adherence and achieving sustainable weight loss.
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Plain English Summary 

Although the health risk of overweight and obesity is widely acknowledged, weight loss treatments are 
often unsuccessful in the long term due to several factors. Binge eating (BE) might explain some of the reduced 
benefits from the treatments. In this study, we investigated whether impulsivity and BE may interact decision 
processes among outpatients with overweight or obesity, and we looked at their underlying brain activity. 
Patients with BE tended to be more impulsive and to prefer sooner rewards compared to later ones. In all patients, 
α oscillations in the parietal lobe have been observed to play a dominant role during reward choice processes. 
A preference for immediate rewards might help to explain the low long-term success of weight loss treatment plans. 
The study may also provide useful information for clinicians working with patients with overweight or obesity.

Keywords Impulsivity, Binge eating, Temporal discounting, Overweight, Obesity, Alpha rhythm

Introduction
The World Health Organization (WHO) [1] defines 
overweight and obesity as clinical conditions 
characterized by abnormal or excessive fat accumulation 
that may impair health. These clinical conditions are 
commonly evaluated through the body mass index (BMI, 
kg/m2), a simple index of weight-for-height. Overweight 
(BMI > 25) is considered a major risk factor for many 
non-fatal but disabling disorders (e.g. osteoarthritis) and 
is associated with some of the leading causes of death 
(e.g. diabetes, cardiovascular disease, and cancer [2–4]) 
whereas obesity (BMI ≥ 30) is thought to confer a 2- to 
10-year decrease in life expectancy [5]. The prevalence 
of overweight and obesity has increased over the past 
30  years. Currently, about half of adults in developed 
countries are living with overweight or obesity, with 
prevalence rates ranging from 30 to 66% [6, 7]. Obesity 
is a growing and serious public health issue, as well as a 
major economic and even environmental burden [8, 9]. 
Although the health risks associated with living with 
overweight and obesity are widely acknowledged in both 
the literature and public opinion, long-term success in 
weight loss treatments remains elusive. Several factors 
have been linked to challenges in maintaining weight loss 
over the long term [10]. These factors include behavioral 
aspects such as physical activity and self-monitoring of 
weight [10], cognitive aspects like poor self-image, high 
expectations from treatment, and dichotomous thinking 
[11], and weight-related components including baseline 
BMI and maximum lifetime weight [12]. This data has 
stimulated the development of multidisciplinary lifestyle 
modification teams aimed at providing patients with a 
comprehensive long-term management of obesity [13]. 
Although less frequently explored, the high prevalence 
of binge eating (BE) behavior among individuals seeking 
weight loss treatment [14] is often underestimated in 
lifestyle modification programs and may contribute 
to reduced treatment efficacy [15, 16]. Furthermore, 
BE is more common among those seeking weight loss 
interventions compared to those who are not, with 

9–29% of individuals reporting binge episodes [17]. Over 
25% of patients seeking treatment for obesity meet the 
diagnostic criteria for Binge Eating Disorder (BED) [18, 
19]. BED is characterized by regular episodes of binge 
eating during which individuals consume large amounts 
of food and experience a loss of control over their eating 
behavior [20]. Patients with BED often fail to self-regulate 
their behavior when coping with negative emotions such 
as anxiety, depression, guilt, and shame, thus exposing 
them to a number of unhealthy risk factors including 
overweight and obesity [21–24]. Therefore, the evaluation 
of self-regulatory control difficulties in patients with 
either subclinical BE behaviors and full-blown BED in 
weight loss treatments is a relevant clinical factor when 
planning more effective clinical interventions [25].

Evidence suggests that BE is associated with a range 
of cognitive control deficits related to impulsivity, 
particularly lower response inhibition, preference 
for immediate gratification (i.e., increased temporal 
discounting), and maladaptive decision-making [26]. 
The emotional attraction to food items and consumption 
is related to the balance between impulsive immediate 
reward-sensitivity (the ‘doers’) with reflective self-control 
for delay of gratification (the ‘planners’) [27, 28]. It has 
been observed that bingeing behaviors can be driven by 
emotional states and impulsivity traits (i.e., looking for 
immediate need gratification), whereas eating restriction 
can be driven by disproportionate self-control (i.e., 
looking at negative consequences for self-image [26, 29]). 
Individuals who show a strong reward-related response 
to foods combined with low levels of self-control are 
particularly susceptible to overeating and overweight, 
whereas those with effective self-control appear to be 
protected [25, 30].

Delay or temporal discounting (TD) measures one’s 
preference for smaller-sooner (the ‘doers’) versus larger-
later rewards (the ‘planners’). The temporal discounting 
task (TDt) is considered a reliable behavioral measure of 
the maladaptive behavior pattern underlying overeating 
[22, 31–33]. Performance on the task is usually reported 
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as the discounting parameter k (see [34]). It assesses the 
capacity to delay gratification/receipt of a reward which is 
a facet of impulsivity [34]. The general procedure involves 
participants completing a series of trials involving a 
selection between a larger reward provided following 
a variable delay versus a smaller reward provided 
immediately. Choosing the larger reward with a delay 
is associated with reduced temporal discounting, while 
picking the smaller reward with no delay is associated 
with increased temporal discounting. Including a "now" 
and "not now" condition in the TDt is useful because 
it directly measures impulsivity and mirrors real-life 
decision-making scenarios [34]. By presenting choices 
between immediate and delayed rewards, the TDt 
mirrors the decision-making processes individuals face 
in various contexts, such as health-related behaviors 
like dieting. Individuals who consistently choose 
smaller, immediate rewards over larger, delayed rewards 
demonstrate higher difficulties in delaying gratification, 
a relevant component to understanding the underlying 
mechanisms of binge eating and obesity [25, 30].

Monetary stimuli are commonly employed in the 
task though food-related stimuli have been used too 
[35–37]. However, presenting food-related items to 
BE subjects may bias the assessment of the underlying 
impulsive functioning because of the stimuli contents. 
In other words, subjects may be conditioned by their 
psychological status in being compulsively attracted by 
food items or feeling guilty in their avoidance of food 
contents. Therefore, using monetary stimuli may present 
the advantage of evaluating impulsivity as a cognitive 
functioning rather than a by-product of the subjects’ 
approach to food [38].

Even though TD has been recently proposed as a 
behavioral marker of obesity [39], data regarding TD in 
people with overweight or obesity are mixed. Several 
inconsistencies across studies of obesity, including 
sampling criteria and heterogeneity in TD tasks/analyses, 
are likely to contribute to such disparity in findings 
[40–43]. Furthermore, most obesity TD trials failed to 
specify whether BE subjects were excluded or whether 
BE behavior was controlled for. Given the high rates of 
co-morbidity between overweight/obesity and BED [44], 
the increased rates of TD found in obesity studies not 
accounting for BE conditions may not be attributable to 
obesity alone.

With bingeing behaviors, self-regulatory control 
difficulties are thought to be mainly underpinned by 
aberrant prefrontal neural circuitry, manifesting in 
impaired regulation of appetite, emotion, and self-control 
[45–48]. For example, [49] suggested that reduced 
connectivity between the ventromedial and dorsolateral 
prefrontal cortex is associated with increased rates of 

TD. Given that increased TD was found to be associated 
with poorer adherence to a calorie-restricted diet in 
that study, impaired functional connectivity between 
frontal and parietal brain areas, crucial in cognitive 
control mechanisms, could be a key contributor to the 
development and maintenance of obesity and, moreover, 
a predictor of treatment response [49]

To fill this gap, we tested obese patients divided in tow 
groups with and without BE. To take in account also a 
clean impulsivity dimension we presented the Barratt 
Impulsiveness Scale (BIS-11) and divided the sample 
also according to the relative data (low BIS and high 
BIS groups; see the Methods section for more details). 
Patients were engaged in a temporal discounting task 
[50] in which they had to choice between early small 
monetary rewards and delayed but larger ones. In the 
Now condition, the smaller rewards were immediate 
and the larger ones could be obtained after a variable 
delay (2–365 days). In the Not-now condition the smaller 
rewards could be obtained after 60  days and the larger 
ones variably from 62 to 425  days. There was also a 
control condition in which no delay differences between 
the small and larger reward options were present, added 
to ensure that participants were actually focused on the 
task and responded not randomly.

Brain rhythms were recorded during the task using 
high density electroencephalography (hd-EEG). Different 
previous studies in the field analyzed mainly event-related 
potentials and found a preponderant role of frontal areas 
[51–56] along with parietal areas. In particular when EEG 
source localization was performed, the main generators 
were anterior areas, such as the dorsolateral prefrontal 
cortex and the insula. Even the P300, an important brain 
response to salient stimuli considered in several studies 
in the field, has been shown to have also a frontal source 
[57, 58]. It should be also mentioned that deep brain 
areas important for reward behavior (ventral tegmental 
area, nucleus accumbens, septum) cannot be reliably 
studied with EEG due to their distance from the scalp.

Here we focus on whole spectrum brain oscillations 
as these were only partially investigated in the field 
and never with the present patients typology [59–61]. 
Furthermore, brain rhythms are informative about the 
psychological status of the subject [62], in particular 
in perceptual and decision-making conditions relevant 
in our study. The relatively large number of electrodes 
of our hd-EEG device allowed us to select regions of 
interest (ROIs) at the level of the Brodmann areas, an a 
priori methodology widely used in EEG studies (see e.g. 
[63, 64]).

The main goal was to investigate whether impulsivity 
and BE may interact with the TDt and to explore the 
underlying brain activity in outpatients with overweight 
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or obesity who are starting treatment to achieve weight 
loss. In particular, the aims of the study were: (a) to 
investigate whether patients with overweight or obesity 
and higher impulsivity or binge eating (BE) behaviors 
show a preference for immediate gratification (i.e., 
decreased temporal discounting) in different conditions 
of rewards available sooner or later, compared to patients 
with lower impulsivity or without BE behaviors; (b) 
to evaluate whether the groups with different levels of 
impulsivity and BE behavior show different brain activity 
through hd-EEG recording during TDt. Based upon the 
previous literature, we expected that: (a) both groups of 
patients with higher impulsivity or with BE would exhibit 
more TD in Now and Not-now conditions than patients 
with lower levels of impulsivity and without BE behavior, 
(b) different levels of impulsivity and BE behavior would 
be accompanied by a modulation of frontal cerebral 
rhythms during TDt.

Methods
Participants
A sample of 40 treatment-seeking outpatients with 
overweight or obesity were enrolled at the Clinical 
Nutrition Centre of the University Clinical Hospital of 
Chieti (Italy), consecutively selected from referrals to a 
dietary control program for any medical reason during a 
12 months-period (January to December 2019). Patients 
were evaluated during their first medical examination. 
All the participants were started on a non-surgical, 
non-medication weight loss program, which was aimed 
at dietary change, weight control, adequate daily food 
intake, paced eating, and healthy lifestyle maintenance, 
tailored on individual basis.

To maximize ecological validity, patients aged 18 to 
65 and with a BMI ≥ 25 were included. Subjects were 
selected for inclusion only if their main reason for 
consultation was being overweight and had no significant 
medical comorbidity. Documented or self‐reported 
psychiatric disorders, cognitive impairment, pregnancy, 
severe medical comorbidity (e.g., thyroid dysfunction, 
diabetes, chronic liver disease, and any other physical 
diseases which could interfere with eating behavior), or 
inability to perform/understand the self‐rating scales 
were considered exclusion criteria. The sample included 
40 outpatients and, after removing those who did not 
meet the inclusion criteria or provided incomplete 
data, 26 (65%) outpatients formed the final sample. A 
team of expert physicians and psychologists evaluated 
patients for their medical history and past or current 
psychopathology.

Participants were categorized as either with (BE group) 
or without BE (NBE group) based on BED or subthreshold 
BED status (less than 1-weekly episode and/or for less 

than 3 months) assessed with the eating disorders module 
of the Structured Clinical Interview for DSM5—Research 
Version (SCID-5-RV) [65]. Thirteen participants (BE 
group) met the criteria for BED or subthreshold BED, 
and thirteen (NBE group) had 0-monthly episodes. The 
same participants were also categorized either as having 
low impulsivity (Low BIS) or high impulsivity (High BIS) 
according to the outcome of the Barratt Impulsiveness 
Scale (BIS-11, see below). Handedness was evaluated 
with Edinburgh Handedness Inventory [66] and showed 
that all participants were right-handed except one (mean 
handedness score = 80.33 ± 41.36).

All patients gave written informed consent to 
participate. The study was designed and carried out 
in accordance with the World Medical Association 
Declaration of Helsinki and its subsequent revisions 
[67] and was approved by the Ethics Committee of the 
Department of Psychological, Health, and Territorial 
Sciences of the University G. d’Annunzio of Chieti-
Pescara (Prot. n. 254 of 03/14/2017).

Procedures
Temporal discounting task
The experimental paradigm of Temporal Discounting 
Task (TDt) was adapted from a standard procedure 
previously used in literature (see [50, 68–70]) and 
completely automated by means of a homemade software 
written in Microsoft Visual Basic v6.0. Before starting the 
task, participants were informed that in each trial they 
had to press “Esc’’ for the left-side option and “Enter” for 
the right-side option on the computer keyboard. The left-
side “Esc” key was to be used if they chose the option tag 
located at the left side of the screen (corresponding to a 
lower amount of money available sooner) and the right-
side “Enter” key if they chose the option tag located at the 
right side of the screen (corresponding to a larger amount 
of money available later). They were informed that there 
were no right or wrong choices and that all choices were 
fictitious, namely, that they will not receive the actual 
consequences of their choice.

The option stimuli consisted of 2 labels reporting a 
monetary amount and a temporal delay (e.g., 20 euros 
now/40 euros tomorrow). Each trial began with a 1  s 
fixation, followed by a screen depicting the two available 
options. The two options appeared on the left and on 
right side of the screen, indicating the amount (e.g., a 
lower amount on the left-side choice tag compared to the 
amount indicated on the right-side choice tag) and the 
delay of delivery of the reward (e.g., ‘now’ on the right, 
‘later’ on the left). The positions of the labels reporting 
the amount of money (smaller amount vs larger amount) 
and the temporal delays (immediately, after a delay) were 
balanced across conditions.
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In the TDt, two temporal ‘Now’ and ‘Not-now’ 
conditions were included:

1. In the “Now” condition, participants had to choose 
between a smaller amount of money available 
immediately (e.g., right-side choice) or a larger 
amount of money available after a variable delay (e.g., 
left-side choice). There were six possible delays: 2, 14, 
30, 90, 180, and 365  days, which were presented in 
different blocks wherein for each block five choices 
had to be made.

2. In the “Not-now” condition, participants had to 
choose between a smaller amount of money that 
could be obtained in 60 days (e.g., right-side choice) 
and a greater amount of money that could be 
obtained after a variable delay of more than 60 days 
(e.g., left-side choice). As in the "Now" condition, 
there were six possible variable delays: 62, 74, 90, 150, 
240, and 425 days, which were presented in different 
blocks wherein for each block five choices had to be 
made.

Within each block, the amount of the sooner reward 
was adjusted based on the participant’s previous choice, 
using a titration procedure that converged towards 
the amount of the sooner reward that was equal, in 
subjective value, to the later reward. For example, if 
participants were presented with a choice between either 
40€ later (i.e., later reward or larger-later) or 20€ sooner 
(i.e., sooner reward or smaller-sooner), whenever the 
participant picked the sooner reward, the subsequent 
trial presented an amount that was smaller (e.g., 10€) 
than the one selected in the previous trial (i.e., 20€). On 
the other hand, whenever the later reward was chosen 
(i.e., 40€), the subsequent trial increased the amount in 
the sooner condition (e.g. 30€). The size of the adjustment 
in the sooner reward decreased with successive choices; 
the first adjustment was half of the difference between 
the sooner and the later reward (in the example above, 
10€) whereas, for subsequent choices, it was half of the 
previous adjustment (e.g., 5€; 2.50€; 1.25€; etc.). This 
procedure was repeated until the participant made 
five choices at one specific delay of delivery of the later 
option, after which, a new series of choices began at 
another delay of delivery of the later option (of the same 
or different temporal condition).

There was a third control condition, in which 
participants had to choose between €40 and a smaller 
amount of money, both available "now" (e.g. €40 now or 
€20 now) or both available in 365  days (€40 in 365  day 
or €20 in 365  days). The amount of the smaller option 
in the control condition was adjusted using the same 
titration procedure described above. All participants 

consistently chose the larger reward in this control 
condition, indicating that they adequately understood the 
task and had an appropriate sensitivity to reward. This 
condition was intended to verify participant’s attention 
and engagement during the task and was not included in 
the statistical analyses.

The order of delay blocks, as well as the different 
temporal conditions (Now, Not-now, and control 
condition), was randomized within subjects.

Self‑reported questionnaires
Binge Eating Scale (BES): the Italian version of the 
16‐item Binge Eating Scale (BES) [71, 72] was used to 
assess the severity of BE behavior. Scores range from 0 
to 46, with a score ≥ 27 having conventionally served as 
a threshold value for identifying the presence of severe 
BE, ≥ 18 for moderate BE, and ≤ 17 for minimal or no BE 
[73]. This instrument has been widely used as a screening 
tool [73, 74]. It has good internal consistency reliability 
and high sensitivity and specificity for discriminating 
between binge eaters and non-binge eaters, presenting 
similar results to those obtained by reliable and 
supported semi-structured interviews [73–76]. Within 
this sample, Cronbach’s α was 0.87.

Barratt Impulsiveness Scale (BIS-11): the Italian 
version of the Barratt Impulsiveness Scale (BIS-11) [77, 
78] was used to measure impulsivity. The scale consists 
of 30 items that evaluate motor, attention, and planning 
components. Participants were asked to rate how often 
impulsive traits were descriptive for them (e.g., “I act 
on impulse”, “I get easily bored when solving thought 
problems”, “I say things without thinking”). Each item is 
scored on a 4-point Likert scale ranging from 1 (= rarely 
or never) to 4 (= almost always or always). Scores range 
from 30 to 120, with higher scores indicating a higher 
level of impulsivity. The total score of the BIS-11 is an 
internally consistent measure and is widely used for 
the assessment of impulsiveness among the general 
population and selected patients [79]. Within this sample, 
Cronbach’s α was 0.83.

EEG recordings
Participants filled out the psychological scales previously 
described before having the EEG electrodes attached to 
their scalp. Participants sat on a chair at about 60  cm 
from the computer monitor measuring 34 × 27 cm (15.4 
inches), and they were instructed to assume and maintain 
a relaxed position for the entire duration of the session. 
EEG data were continuously recorded (bandpass: 0.01–
100  Hz, sampling rate: 1024  Hz; EB-Neuro Be-plus) 
from 56 scalp cup electrodes positioned according to 
a standard 10–10 system (electrical reference between 
AFz and FCz; ground electrode between Pz and Oz). 
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Electrode impedance was kept smaller than 5 kΩ. Signals 
were stored on a computer for offline analysis. The EEG 
recording started 3 min before the TDt and ended 3 min 
after it. During the registration, the participant was 
seated comfortably and was asked to maintain open eyes, 
to reduce the number of blinks, to stay still, and to focus 
on the TDt.

Preliminary EEG data analysis
EEG data were pre-processed offline, by using the 
NPXLab 2016 software (available at http:// www. 
brain terfa ce. com; [80]). Raw EEG data were bandpass 
filtered between 0.5 and 100 Hz, notch filtered at 50 Hz 
and sampled at 512  Hz. Data were processed with 
Independent Component Analysis (ICA) to remove the 
eye-blinks artifacts. Remaining artifacts were removed 
by visual inspection. Cleaned data were segmented in 
single 1-s epochs (1000  ms post-stimulus) with respect 
to the stimulus onset (response options display) and 
analyzed in the frequency domain with respect to a 
baseline period of 1 s chosen in the rest period before the 
task. The frequency bands including delta (δ, 1–4  Hz), 
theta (θ, 4.5–8 Hz), alpha (α, 8.5–13 Hz), beta (β, 13.5–
29.5  Hz), and gamma (γ, 30–40  Hz) were computed for 
each condition, using average Fourier cross-spectral 
matrices, with the LORETA (LOw-Resolution brain 
Electromagnetic TomogrAphy; [81]) KEY software 
package (v20181101; http:// www. uzh. ch/ keyin st/ loret a#_ 
Toc39 13726 08).

Source localization of the EEG frequency bands 
was obtained using the sLORETA technique [82]. 
sLORETA employs the current density estimate given 
by the Minimum Norm solution and the localization 
inference based on standardized values of the current 
density estimates. In conditions of high signal-to-noise 
ratio, sLORETA has a zero-localization error. sLORETA 
solutions are computed using a realistic head model [83] 
within the source space (6239 voxels at 5  mm spatial 
resolution; [84]), and they are restricted to cortical 
grey matter and hippocampi, as determined by the 
probabilistic Talairach atlas [85].

In order to identify intracerebral electrical sources, 
we used the LORETA software package ‘ROI-maker 2’ 
to construct the region of interests (ROIs). We selected 
a list of 33 ROIs, including all voxels with coordinates 
corresponding to the respective Brodmann Areas (BA; 
Table 1). Current densities in the region of interest were 
then computed using the ‘sLORETA to ROI’ function.

Data analysis
Preliminarily, we performed a power analysis to 
determine the sample size needed to detect a medium 
effect size (0.5). Power analysis was conducted using: (1) 
an alpha level of 0.05; (2) a power of 0.95; (3) number of 
groups = 4; (4) number of conditions = 2. According to 
statistical computing, a sample size of n = 24 was required 
for the ANOVA with repeated measures (within-between 
interaction). Power calculation was performed using the 
program G*Power 3.1 [86].

Table 1 Regions of interest (ROIs) for the EEG LORETA analysis

G: gyrus, L: lobe, Inf: inferior, Sup: superior, Fro: frontal, Par: parietal, Temp: temporal, Occ: occipital, Cing: cingulate

ROI n) Name Brodmann areas Lobe ROI n) Name Brodmann areas Lobe

1) Angular G 39 Par, Temp L 18) Paracentral Lobule 3–7,31 Fro, Par L

2) Anterior Cing 10,24–25,32–33 Limbic L 19)Parahippocampal G 19–20,27–28,30,34–37 Limbic, Occ L

3) Cingulate G 6,23–24,31–32 Limbic L 20) Postcentral G 1–5,7,40,43 Fro, Par L

4) Cuneus 7,17–19,23,30–31 Occ L 21) Posterior Cing 18,23,29–31 Limbic L

5) Extra Nuclear 13,47 Fro L, Sub-lobar 22) Precentral G 4,6,9,43–44 Fro, Par L

6) Fusiform G 18–20,36–37 Temp, Occ L 23) Precuneus 7,18–19,23,31,39 Par, Occ L

7) Inf Fro G 6,9–11,13,44–47 Fro, Temp L 24) Rectal G 11 Fro L

8) Inf Occ G 17,18,19 Occ L 25) Subcallosal G 11,13,25,34,47 Fro L

9) Inf Par Lobule 7,34,35,49,76,77 Par L 26) Sub-Gyral 2,6–8,10,13,19–21, 31,37,39–40 Fro, Limbic, Temp, Par L

10) Inf Temp G 15,16,17,32,57,58,59,74 Limbic, Temp, Occ L

11) Insula 13,22,40,41,45,47 Temp L, Sub-Lobar 27) Sup Fro G 6,8–11 Fro L

12) Lingual G 17–19 Occ L 28) Sup Occ G 19,39 Temp L,, L

13) Medial Fro G 6,8–11,25,32 Fro L 29) Sup Par Lobule 5,7,40 Par L

14) Middle Fro G 6,8–11,46–47 Fro L 30) Sup Temp G 13,21–22,38–39,41–42 Temp L

15) Middle Occ G 18–19,37 Occ L 31) Supramarginal G 39–40 Temp, Par L

16) Middle Temp G 19–22,37–39 Temp, Occ L 32) Transverse Temp G 41–42 Temp L

17) Orbital G 11,47 Fro L 33) Uncus 20,28,34,36,38 Limbic L

http://www.brainterface.com
http://www.brainterface.com
http://www.uzh.ch/keyinst/loreta#_Toc391372608
http://www.uzh.ch/keyinst/loreta#_Toc391372608
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Statistical data analysis was performed using SPSS 
26.0 for Windows. Descriptive statistics were reported 
in terms of mean and standard deviation [Mean (SD)] 
or absolute frequencies. The level of significance was set 
at 95%. Independent and paired-sample Student’s t tests 
or chi-square tests (χ2) were used to compare between- 
and within-group differences in socio-demographic and 
clinical variables between BE and NBE groups. Cohen’s 
d was used as a measure of effect size. A standardized 
effect size of 0.20–0.50 is considered small, 0.50–0.80 
moderate, and > 0.80 large [87]. The Cramer’s φ was also 
used as a measure of the strength of association for the 
χ2 test [88]. The three magnitudes of effects of 0.10–0.30, 
0.30–0.50, and > 0.50 are considered as small, medium, 
and large, respectively. Pearson’s correlation coefficient 
was used for the associations between BIS and BES 
scores and TD rate. The four magnitudes of Pearson’s 
coefficient of 0.20–0.40, 0.40–0.60, 0.60–0.80, and > 0.80 
are considered as low, moderate, marked, and high, 
respectively.

TDt was assessed through the temporal discounting 
parameter (k) [89–91]. This is the rate at which the 
subjective value of a future reward decays with delay 
(TD rate), for each temporal condition (Now, Not-
now). The hyperbolic function SV = 1/(1 + kD), where 
SV = subjective value (expressed as a fraction of the 
delayed amount), and D = delay between the two options 
at stake (in days), was fit to the data to determine the k 
constant of the best fitting TD function using a nonlinear, 
least squares algorithm. The larger the value of k (the 
steeper the discounting function), the more participants 
were inclined to choose smaller-sooner (SS) rewards over 
the larger-later (LL) rewards. The hyperbolic k constants 
were normally distributed after log-transformation, 
and the comparisons were performed using parametric 
statistical tests. Log-transformed k near to 0 describes a 
prevalent SS pattern of choice (i.e., higher delay discount) 
while very negative log-transformed k describes a 
prevalent LL pattern of choice (i.e., lower delay discount).

For this, we first carried out a correlation analysis 
between BIS scores, BES scores, and the log-transformed 
k of the Now and Not-now conditions. Due to the 
multiple comparisons, we applied the Bonferroni 
correction at a significance threshold of p = 0.006.

Subsequently, we divided our sample according to 
presence of BE (according to SCID-5-RV) and impulsivity 
trait (BIS median score) and carried-out a mixed analysis 
of variance (ANOVA) on log-transformed k values with 
BE group (NBE, BE) and BIS Group (Low BIS, High BIS) 
as between-subjects factors, and Temporal condition 
(Now, Not-now) as a within-subjects factor.

Regarding the EEG data, our focus was on assessing 
the EEG power spectra after the options display (before 

the response) in the two different conditions of the 
TDt (Now and Not-now, see the Methods section). We 
carried out 5 separate mixed ANOVAs, one for each of 
the 5 frequency bands, on the current density values with 
BIS Group (Low BIS, High BIS) and BE group (NBE, BE) 
as between-subjects factors, Temporal condition (Now, 
Not-now), Response (SS, LL), and the 33 ROIs (Table 1) 
as within-subjects factors.

Due to the multiple comparisons, we applied the 
Bonferroni correction at a threshold of p < 0.01. In all 
analyses, the post-hoc analyses were performed with the 
Newman-Keuls test.

Results
Sample characteristics and behavioral results
Included patients (Table 2) were mostly females (n = 17, 
65.4%), overweight (n = 16, 61.5%), with a mean age of 
32.30  years (SD = 10.39), and a high educational level 
(n = 23, 88.5%). Compared to the NBE patients, the 
BE group had a higher incidence of obesity (φ = 0.47), 
had higher BMI (d = 1.20), level of impulsivity (BIS-11, 
d = 1.52), BE (BES, d = 2.66), and increased TD in the 
Not-now condition (K-log NN, d = 0.92). No differences 
were found in age, gender, educational level, and delay 
discounting in the Now condition (K-log N) between the 
two groups (Fig. 1).

Behavioral results
The ANOVA performed on log-transformed k using BE 
and BIS groups as between factors, and the Temporal 
condition as a within-subject factor showed a significant 
effect of the BE group (F1, 22 = 5.315, p = 0.031, partial 
eta-squared = 0.195; where BE subjects showed higher 
k-log scores compared to low-BES subjects), a significant 
interaction BE group x BIS group (F1, 22 = 4.348, p = 0.049, 
partial eta-squared = 0.165), a significant interaction 
Temporal condition x BE group (F1, 22 = 5.164, p = 0.033, 
partial eta-squared = 0.190) and a significant triple 
interaction Temporal condition x BE group x BIS group 
(F1, 22 = 5.900, p = 0.024, partial eta-squared = 0.211) and 
no further significant result. According to the Newman-
Keuls post-hoc analyses, the previously reported 
significant interaction BE group x BIS group was based 
on a difference, within the low BIS group, between 
NBE and BE subjects, the latter showing higher k-log 
scores (p = 0.025). The interaction Temporal condition 
x BE group was based on a difference between the two 
BE subgroups in the Not-now condition (p = 0.041; 
BE > NBE). The triple interaction was instead based 
on a higher k-log score of BE / low BIS patients in the 
Not-now compared to the Now condition (p = 0.004), 
on a higher score of the same subjects in the Not-now 
condition compared to NBE/low BIS subjects (p = 0.002), 
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and on a higher score in the Not-now condition of BE/low 
BIS vs. BE/high BIS patients (p = 0.016). Overall, these 
findings show that patients with BE have more impulsive 
tendencies (higher TD) and that they show these 
tendencies for delayed rewards (Not-now condition).

Correlation analysis
The analysis showed a significant positive correlation 
effect size between BIS and BES scores in the large 
range (r = 0.59, p = 0.002), showing that higher impulsive 
subjects were also more prone to more severe BE 
behaviors. Neither the BIS nor the BES scores correlated 
with the log-transformed k. Effect sizes in the moderate 
positive range were found between BES scores and Not-
now log-transformed k (r = 0.40, p = 0.047), therefore 
suggesting that participants who scored higher on BES 
also showed a tendency to choose SS rewards (i.e., higher 
TD) instead of LL rewards in the delayed condition (i.e., 
Not-now; 60  days or more). Additionally, a moderate 
positive correlation was also found between the Now 
and Not-now log-transformed k (r = 0.45, p = 0.019), 
meaning that a prevalent SS pattern of choices in the 
Now condition showed a tendency to a significant 
association with prevalent SS choice patterns in the Not-
now condition and vice versa (Fig. 2).

EEG results
The 5 ANOVAs carried out on the LORETA current 
density for each frequency band showed a significant 
effect for the α band (Fig. 3) and no effects for the other 
bands.

Particularly, in the α band, a significant main effect 
of the ROI was found (F = 1.900, p = 0.003, partial eta-
squared = 0.120). Visual inspection of mean results 
indicated that the ROI 29 (superior parietal lobule) 
presented lower LORETA activation levels with respect 
to all other ROIs. Subsequent Newman-Keuls post-hoc 
results showed that the ROI 29 differed significantly from 
all other ROIs except than from ROI 18 (paracentral 
lobule) and ROI 20 (postcentral gyrus), both located in 
the parietal lobe. The significance levels of the differences 
regarding ROI 29 were of p < 0.001 for the ROIs 1, 5, 7, 
8, 12, 14, 15, 17, 24 and 28; of 0.001 < p < 0.010 for the 
ROIs 2, 4, 6, 10, 11, 13, 16, 19, 21, 23, 25, 27 and 33; of 
0.01 < p < 0.05 for the ROIs 3, 9, 22, 26, 30, 31 and 32. 
Further significant post-hoc results were found between 
ROI 18 and ROIs 8, 12, 17, 24 and 28 (0.03 < p < 0.05), 
where ROI 18 showed always the lower activation levels.

These results indicate that EEG rhythms show a 
desynchronization in the alpha range (reduction of 
power) after the option presentation in the parietal lobe, 
but that they do not differ between the groups nor across 
experimental conditions.

Discussion
The main goal of this study was to investigate whether 
impulsivity and binge eating may interact with the 
TDt and underlying brain activity in outpatients with 
overweight or obesity who are starting treatment to 
achieve weight loss. The main result of this study is that 
patients with BE that self-reported to be less impulsive, 
showed higher temporal discount preferring sooner and 

Table 2 Socio-demographic and clinical characteristics of the study sample (N = 26)

BMI: Body Mass Index, BES: Binge Eating Scale, BIS-11: Barratt Impulsiveness Scale Version 11, K-log N: Now log transformed k, K-log NN: Not-now log-transformed k

Variables Total sample NBE BE t/χ2 p d/φ
N = 26 n = 13 n = 13

Age, M(SD) 32.30 (10.39) 28.69 (5.96) 35.92 (12.69) 1.85 0.07 0.55

Gender, n (%) 0.17 0.68 0.08

Male 9 (43.6) 4 (30.8) 5 (38.5)

Female 17 (65.4) 9 (69.2) 8 (61.5)

BMI 31.11 (8.04) 27.05(3.59) 35.16 (9.28) 2.93 0.007 1.20

Weight class, n (%) 5.85 0.016 0.47

Obese 10 (38.5) 2 (15) 8 (61)

Overweight 16 (61.5) 11 (84) 5 (38)

Educational level, n (%) 3.39 .06 0.36

Less than high school 3 (11.5) – 3 (23.1)

With high school or more 23 (88.5) 13 (100) 10 (76.9)

BIS-11 53.19 (7.73) 48.61 (5.10) 57.76 (7.28) 3.71 0.001 1.52

BES 10.26 (9.18) 3.07 (2.13) 17.46 (7.67) 6.50  < 0.001 2.66

K-log N  − 2.38 (0.63)  − 2.47 (0.72)  − 2.30 (0.53) 0.65 0.52 0.28

K-log NN  − 2.39 (0.56)  − 2.62 (0.42)  − 2.16 (0.60) 2.27 0.03 0.92
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smaller than larger and later rewards when both options 
are being delayed (Not-now condition). Furthermore, 
a preponderant role of α oscillations in the parietal 
lobe has been observed during the processes of reward 
choice. Our findings are consistent with a growing 
number of studies that have established that those who 
tend to choose immediate gratification at the expense 
of a greater long-term reward may be more likely to 
give in to food urges at the expense of long-term health 
outcomes, such as obesity, cardiovascular issues, or other 
related conditions [22, 31–33, 39]. This supports the 

recommendation to include psychological outcomes such 
as impulsivity and dysfunctional eating behaviors when 
designing a weight loss program to prevent a negative 
outcome.

In our first hypothesis, we expected that both groups 
of participants with higher levels of impulsivity and 
with BE behavior showed a preference for immediate 
gratification (i.e., increased delay discounting) in different 
conditions of rewards available sooner (Now condition) 
or respectively later (Not-now condition) as compared 
with those with lower impulsivity or without BE behavior. 
This hypothesis was supported only partially by our 
data. In fact, although patients with BE scored higher on 
impulsivity levels, a decline in perceiving reward when 
both options were being delayed (Not-now condition) 
was observed only in patients with BE that self-
reported to be less impulsive. In contrast, no significant 
difference was found between subjects with high and low 
impulsivity on intertemporal choices. However, there 
were positive correlations between BES and the BIS 
scores and rates of temporal discounting in the Not-now 
condition. This suggests that stronger tendencies towards 
BE are associated with higher self-reported impulsivity. 
However, the increased discounting of delayed rewards 
when both options were delayed (Not-now condition) 
was observed in patients with BE who self-reported lower 
impulsivity. Overall, these results show that patients 
with BE tend to have more impulsive tendencies and 
perceive sooner rewards as more gratifying when both 
options are being delayed, when compared to patients 
without BE. This result favors the notion that the 
reduction in the subjective value of a delayed reward may 
be associated to the delay itself, rather than its amount 
and its delay separately influencing the reward’s choice, 
thus suggesting that the choice of immediate (or sooner) 
rewards is due to impulsive tendencies rather than a lack 
of behavioral inhibition [92].

Unexpectedly, impulsivity was associated to binge 
eating only when declared by the participants through a 
self-reported measure whereas inverse association was 
found by measuring impulsivity on a behavioral basis, 
namely by performing the discounting task. Further 
research is needed to ascertain whether this may be 
due to the unshared variance between psychological 
measures using different sources of information [93] or to 
a misguided self-perception of patients with BE towards 
less controlled behaviors. Another unexpected result 
concerned the main effect, which has been found only in 
the Not-now condition while impulsivity should manifest 
itself also in the immediate. However, self-reported 
impulsivity does not have a consistent relationship with 
discounting rate, as supported by the literature (e.g., 
[94]). Therefore, it is challenging to predict participants 

Fig. 1 The three experimental conditions of the study
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response dynamics in a complex task performed by our 
particular patients sample.

Although several previous studies identified a relation 
between temporal discounting and obesity, none of them 
have examined temporal discounting in relation to BE 
in patients under weight-loss treatment. Therefore, this 
study focused on subtyping outpatients with obesity 
by BE and then examining group differences. The 
current study is the first to provide empirical support 
for a presumptive BE pathway by which impulsivity 
and temporal discounting contribute to weight gain. 
This result is in line with evidence suggesting that 

patients in a weight-loss treatment are at a higher risk 
of adverse treatment outcomes if BE occurs in addition 
to overweight or obesity [15], and suggests that low 
self-reported impulsivity and increased discounting of 
delayed rewards as risk factors for negative weight loss 
program outcomes.

In our second hypothesis, we expected that 
impulsivity and binge eating behavior would be 
accompanied by a modulation of prefrontal cerebral 
rhythms during TDt. The hypothesis was not supported 
by our data. We found that only the α rhythm was 
modulated during the task (reduced power), and 

Fig. 2 Significant interactions: a Temporal condition x BE group; b Temporal condition x BE group x BIS group. Asterisks indicate significant 
post-hoc results
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through LORETA source analysis we could observe 
that such effect occurred in the parietal lobe (more 
precisely in the superior parietal lobule and, to a 
lesser extent, in the paracentral lobule). This is not 

surprising, given the evidence suggesting that parietal 
areas and α-frequency brain oscillations may be 
involved in cognitive processes, including attention, 

Fig. 3 EEG sLORETA statistical maps depicting grand-mean (all subjects) activations in alpha range during the post-stimulus period. The colored 
areas represent the spatial extent of voxels in the current source density. Top panel: significant results projected onto a fiducial cortical surface. 
Bottom panel: same results projected in an average brain MRI template (the slices are located at the indicated MNI coordinates). L: left, R: right, A: 
anterior, P: posterior, S: superior, I: inferior
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problem solving, and decision making [95]. Due to the 
event-related nature of the present EEG analysis [96], 
the present reduction of power (desynchronization) 
of the α-rhythm means that during the task period 
(i.e. immediately after the options presentation) the 
α-rhythm was smaller in amplitude with respect 
to the baseline or rest period (i.e., event-related 
desynchronization), regardless from the experimental 
condition. According to a well-established acquisition 
of the literature in the field, α desynchronization 
follows and external influence which attracts attention 
of the subject and is associated to an opening of the 
thalamus gate which facilitates information flow to 
the cerebral cortex [97]. This result appears thus to 
be not specific for the present task. However, we can 
speculate that a judgment on reward can involve 
specific neural activations in the parietal lobe in people 
with overweight and obesity. This outcome, besides to 
structural alterations involving the parietal cortex in 
patients with obesity [98–100], would be in accordance 
with different recent studies which found that the 
parietal cortex plays also functionally a central role in 
eating disorders and impulsive behavior. [101] found 
altered occipito-parietal resting-state connectivity in 
patients with obesity, which they propose to be related 
to dysfunctions in perception, attention and value 
encoding of visual food cues (see also [102] for an 
earlier review). An fMRI study [103] reported altered 
activation in the posterior parietal cortex (as well as 
in the dorsolateral prefrontal cortex) in patients with 
obesity performing a task very similar to the TDt. In 
an oddball paradigm event-related EEG study, [104] 
found that the N200 and P300 EEG components, which 
are generated in the parietal cortex, are reduced in 
women with obesity. A further EEG study [105] found 
that the parietal cortex (precuneus) plays a central role 
in both food addicted and non-addicted people with 
obesity. Concerning healthy subjects, both prefrontal 
reward and frontoparietal control networks were 
proposed to be implicated in temporal discounting 
[106], with stronger activation of parietal regions being 
associated more to choices involving delayed rewards 
[107, 107–109]. Thus, activation of these regions may 
indicate also specific cognitive control when engaging 
in decision-making regarding rewards and delays. 
This being considered, our data corroborate previous 
evidence suggesting a widespread parietal and frontal 
network implicated in decision processes regarding 
future rewards. Furthermore, our result is in line with 
evidence suggesting that people with obesity have 
a reduced activation in brain areas associated with 
cognitive control, which can correspond with increased 

rates of TD [110–112] and predicts future weight gain 
[49, 113].

Limitations and future directions
The study has some limitations to consider. First, given 
its explorative nature, a consecutive non‐probabilistic 
small sample was used in this study. Future studies with 
probabilistic sampling procedures and larger sample size 
will be useful to investigate the involvement of impulsivity 
and BE in the decision process as well as the effects of age, 
education and BMI which were not balanced among our 
groups. Second, the cross‐sectional nature of our study 
does not allow us to determine the relation direction 
between impulsivity, BE, and temporal discounting over 
time, given that only a longitudinal design could help to 
clarify this point. Third, the task utilized hypothetical 
rewards, thus potentially underpowering the effects of 
the amount and delay sensitivity of participants on their 
temporal discounting choices [107]. Experiential rewards 
may have led to stronger frontal and parietal activations, 
due to a potentially enhanced experience and consequent 
evaluation of both rewards and delays. Future studies 
should aim to implement “real” rewards in their protocols 
in order to accentuate the effects associated with choices 
on temporal discounting tasks. Fourth, the study included 
individuals who volunteered for dietary intervention in 
tertiary care centers, thus limiting the generalizability 
to primary care patients or patients who do not seek 
treatment. Individuals with obesity or overweight 
actively seeking medical, dietary, and psychological help 
for their weight problem and eating behavior are likely 
to be more motivated to make behavioral changes and 
more aware of their psychological problems. Follow-up 
studies should investigate whether the role of impulsivity, 
BE, and TD is different in patients seeking treatment who 
completed the intervention program and those who are 
not seeking for any treatment or dropped out. Finally, in 
this study, several potentially relevant factors were not 
controlled for, such as an objective measure or document 
of past psychopathology, lifetime and current psychiatric 
conditions, quality of life, sleep quality, social support, 
medical comorbidity, physical activity, dietary habits, and 
inflammation activity.

Conclusion
In conclusion, the results of this study suggest that 
patients with overweight or obesity and BE tend to 
have more impulsive tendencies and perceive sooner 
rewards as more gratifying when both options are 
being delayed, compared to patients without BE. 
Furthermore, patients who scored higher in impulsivity 
have decreased α frequency oscillations in parietal 
areas when making choices regarding immediate or 
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delayed rewards. We may speculate that people with 
overweight or obesity may prefer immediate rewards 
such as unhealthy food over long-term rewards. The 
tendency to favor immediate rewards may constitute 
an obstacle for obtaining adherence to treatment 
plans and to achieve weight loss goals for outpatients 
with overweight or obesity. Indeed, there has been 
interest in developing psychological treatments 
that strengthen inhibitory control and moderate 
impulsive behaviors [114]. "Top-down" approaches, 
exemplified by implementation intentions, concentrate 
on bolstering cognitive control to restrain impulsive 
behaviors [115]. Conversely, "bottom-up" approaches, 
like food-specific inhibitory control training, aim to 
modify automatic reactions to food cues by linking 
them with motor inhibition [116]. These strategies 
have demonstrated effectiveness in promoting healthy 
food choices and reducing consumption of unhealthy 
foods, even among individuals who are overweight or 
obese [117]. Clinicians are therefore encouraged to 
include psychological outcomes such as impulsivity and 
dysfunctional eating behaviors when designing a weight 
loss program to prevent a negative outcome [25, 118, 
119]. Furthermore, as specific cortical brain areas seem 
to be associated with impulsivity and delay sensitivity, 
interventions aiming to increase delay tolerance 
through neurofeedback training or non-invasive brain 
stimulation [120, 121] programs may be particularly 
effective in more impulsive people [122, 123].
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